Impacto de la mecatrónica en la medicina

Elizabeth Larrondo Pons, Gustavo Cervantes Montero, Angel Sánchez Roca

Texto completo:

PDF HTML

Resumen

Se efectuó una revisión bibliográfica para determinar el impacto de la mecatrónica en el sector de la salud. Se valoró el desarrollo de esta desde la visión de diferentes investigadores, lo cual ha permitido su inserción en dicho sector. También se comprobó que la robótica y el procesamiento digital de imágenes y señales tienen mayor incidencia en la medicina. Asimismo, se hizo un análisis de la mecatrónica aplicada a esta ciencia, el cual demostró que las áreas quirúrgica y terapéutica son las más favorecidas y se nutren de técnicas innovadoras, que resultan más fiables y menos invasivas para el paciente.

Palabras clave

mecatrónica, equipamiento médico, robótica médica, robot quirúrgico.

Referencias

Mori T. Mechatronics. Yasakawa Internal Trademark Application Memo. 1969.

Harshama F, Tomizuka M, Fukuda T. Mechatronics. What is it, why, and how? IEEE/ASME Transactions on Mechatronics. 1996; 1 (1): 1-4.

Jeong S, Choi H, Lee Ch, Go G, Sim DS, Lim KS, et al. Therapeutic intravascular microrobot through compensation of resistance and mutual inductance in electromagnetic actuation system. International Journal of Control, Automation and Systems. 2015; 13 (6): 1465-75.

Cleary K, Melzer A, Watson V, Kronreif G, Stoianovici D. Interventional robotic systems: Applications and technology state-of-the-art. Minim Invasive Ther Allied Technol. 2006; 15 (2): 101–13.

Najarian S, Fallahnezhad M, Afshari E. Advances in medical robotic systems with specific applications in surgery—a review. J Med Eng Technol. 2011; 35 (1): 19–33.

Li Z, Yang Ch, Burde E. An overview of biomedical robotics and bio-mechatronics systems and applications. IEEE Transactions on systems, man, and cybernetics: Systems. 2016; 46 (7): 1-6.

Rojas JS, Escrucería S, Suárez MA, Peña CA. Diseño e implementación de un brazo robótico de bajo costo para la automatización en el proceso de análisis bacteriológico. Revista INGE CUC. 2012; 8 (1): 219-30.

Domínguez Castellar RE, Pinilla Brito S. Diseño y simulación de un dispositivo robótico para organizar medicamentos. [Tesis]. Nueva Granada: Universidad Militar Nueva Granada; 2012.

Guzmán Valdivia CH, Blanco Ortega A, Oliver Salazar MA. Entendiendo la mecatrónica en la rehabilitación. México: CIINDET; 2013.

Huang HP, Liu YH, Lee WCh, Kuan JY, Huang TH. Rehabilitation robotic prostheses for upper extremity. 2015.

López Camacho F, Serna Hernández L, Olguín Camacho J. Desarrollo de un exoesqueleto para la rehabilitación de miembros superiores. Revista de Tecnología e Innovación. 2016; 3 (7): 1-12.

Bhagat NA, Venkatakrishnan A, Abibullaev B, Artz EJ, Yozbatiran N, Blank AA, et al. Design and optimization of an EEG-based brain machine interface (BMI) to an upper-limb exoskeleton for stroke survivors. Front Neurosci. 2016 [citado 8 Jul 2017]. Disponible en: https://www.frontiersin.org/articles/10.3389/fnins.2016.00122/full

Yasodharan R, Sivabalakrishnan R, Priya K. Study of medical mechatronics. JPSBM. 2014; 2 (11): 52-9.

Baldoli I, Cuttano A, Scaramuzzo R, Tognarelli S, Ciantelli M, Cecchi F, et al. A novel simulator for mechanical ventilation in newborns: Mechatronic Respiratory System Simulator for Neonatal Applications. Proc IMechE Part H: J Engineering in Medicine. 2015; 229 (8): 581–91.

Adeluyi O, Lee JA. Medical virtual instrumentation for personalized health monitoring: A Systematic Review. Journal of Healthcare Engineering. 2015; 6 (4): 739–77.

Huang HP, Liu YH, Lee WC, Kuan JY, Huang TH. Medical mechatronics: Part I - rehabilitation robotic prostheses for upper extremity. Contemporary Issues in System Science and Engineering. EUA: Wiley-IEEE Press; 2015.

Jiménez Franco LD. Desarrollo de un sistema basado en una interfaz cerebro computador para controlar dispositivos mecatrónicos de uso médico orientados a pacientes con discapacidad severa. [Tesis]. Medellín: Universidad EAFIT; 2013.

Jin J, Sellers EW, Zhang Y, Daly I, Wang X, Cichocki A. Whether generic model works for rapid ERP-based BCI calibration. J Neurosci Methods. 2013; 212 (1): 94-9.

Suárez Mora DR, Lancheros Cuesta D, Aguirre Carpeta WY. Sistema HCI basado en el controlador Leap Motion aplicado a la prevención de caries dental. Bogotá: CIIMA; 2015. p. 136-40.

Geethanjali P. A mechatronics platform to study prosthetic hand control using EMG signals. Australas Phys Eng Sci Med. 2016; 39 (3): 765-71.

Esqueda Elizondo J, Hernández Manzo D, Bermúdez Encarnación E, Jiménez Beristaín L, Pinto Ramos M. Manipulación de un brazo robótico mediante señales electroencefalográficas. Rev Tec Innv. 2016; 3 (7): 89-98.

Riillo F, Bagnato C, Allievi AG, Takagi A, Fabrizi L, Saggio G, et al. A simple fMRI compatible robotic stimulator to study the neural mechanisms of touch and pain. Ann Biomed Eng. 2016; 44: 2431-41.

Ota R, Yamamoto I, Lawn M, Nagayasu T, Yamasaki N, Matsumoto K. Development of a surgical instrument using an elastic vibration wing mechanism. First International Symposium on Flutter and its Application. JAXA SP. 2016. p. 403-6.

Chaparro Velasco MC, Vivas Albán OA. Robótica quirúrgica, desde los grandes asistentes hasta la nanotecnología. Scientia et Technica. 2016; 21 (2): 182-90.

Bogue R. Miniature and microrobots: a review of recent developments. Industrial Robot: An International Journal. 2015; 42 (2): 98-102.

Beccani M, Tunc H, Taddese A, Susilo E, Volgyesi P, Ledeczi A, et al. Systematic design of medical capsule robots. IEEE Design & Test. 2015; 32 (5): 98-108.

Khulbe P. Nanorobots: a review. IJPSR. 2014; 5 (6): 2164-73.

Yoshida S, Fukui N, Saito K, Fujii Y, Kageyama Y, Kihara K. Novel image monitoring system using a head-mounted display for assistants in da Vinci surgery. International Journal of Urology. 2015; 22: 520–21.

Petrescu RV, Aversa R, Apicella A, Petrescu FI. Future Medicine Services Robotics. AJEAS. 2016; 9 (4): 1062-87.





Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.