Riesgo ambiental por arsénico y boro en las cuencas hidrográficas Sama y Locumba de Perú

Dante Morales Cabrera, Edgardo Avendaño Cáceres, Daniel Zevallos Ramos, Julio Fernández Prado, Zoila Mendoza Rodas

Texto completo:

PDF HTML

Resumen

Se efectuó un estudio para estimar el riesgo ambiental sostenible relativo ante concentraciones totales de arsénico y boro en aguas superficiales de las cuencas hidrográficas Sama y Locumba, en Tacna, Perú, a través de muestreos de tipo no probabilístico por conveniencia en puntos referenciales, durante los meses de agosto y noviembre del 2016, así como abril y junio del 2017.  Se obtuvo que los valores de arsénico en los respectivos meses fueron 0,0731; 0,29835; 0,287 y 0,711 mg.L-1, lo que superó el límite máximo permisible (0,01 mg.L-1); este incumplimiento fue similar en cuanto al boro, pues se hallaron concentraciones de 8,681 y 4,148 mg.L-1, pero el valor máximo establecido es de 2,4 mg.L-1.  Las concentraciones determinadas por meses revelaron diferencias estadísticamente significativas (p≤0,05).  Se concluyó que las aguas superficiales como recurso natural fueron no sostenibles y representaban un riesgo ambiental y para la salud humana.

Palabras clave

toxicidad, arsénico, boro, agua potable, riesgo ambiental, Perú.

Referencias

Mouquet N, Lagadeuc Y, Devictor V, Doyen L, Duputié A, Eveillar D, et al. Predictive ecology in a changing world. J Appl Ecol. 2015; 52(5): 1293–310.

Maltby L. Ecosystem services and the protection, restoration and management of ecosystems exposed to chemical stressors. Environ Toxicol Chem. 2013; 32(5): 974–83.

Brown AR, Whale G, Jackson M, Marshall S, Hamer M, Solga A, et al. Towards the definition of specific protection goals for the environmental risk assessment of chemicals: lessons learned from a review of wider environmental legislation. Integr Environ Assess Manag. 2017; 13(1): 17–37.

Londoño Franco LF, Londoño Muñoz PT, Muñoz García FG. Los riesgos de los metales pesados en la salud humana y animal. Rev Bio Agro. 2016 [citado 17 de Nov 2017]; 14(2): 145. Disponible en: http://www.scielo.org.co/scielo.php? script=sci_ arttext& pid=S1692-35612016000200017&lng=en&nrm=iso&tlng=es

Gall JE, Boyd RS, Rajakaruna N. Transfer of heavy metals through terrestrial food webs: a review. Environ Monit Assess. 2015; 187(4):201.

Subhani M, Mustafa I, Alamdar A, Katsoyiannis IA, Ali N, Huang Q, et al. Ecotoxicology and Environmental Safety Arsenic levels from different land-use settings in Pakistan: Bio-accumulation and estimation of potential human health risk via dust exposure. Ecotoxicol Environ Saf. 2015; 115: 187-94.

Kabu M, Sirri-Akosman M. Biological effects of boron. Reviews of environmental contamination and toxicology. 2013; 225: 57-75.

Argota Pérez G, Argota Coello H, Iannacone J. Costo ambiental sostenible relativo a la variabilidad físico-química de las aguas sobre la disponibilidad de metales en el ecosistema San Juan, Santiago de Cuba-Cuba. The Biologist (Lima). 2016 [citado 17 de Nov 2017]; 14(2): 219-32. Disponible en: http://sisbib.unmsm.edu.pe/ bvrevistas/ biologist/v14_n2/pdf/a05v14n2.pdf

Sánchez Turcios RA. t-Student. Usos y abusos. Rev Mex Cardiol. 2015 [citado 17 de Nov 2017]; 26(1): 59–61. Disponible en: http://www.scielo.org.mx/ scielo.php? script=sci_arttext&pid=S0188-21982015000100009

Shiyun C, Juxiang H, Jinxiu Z, Fangyong D. Study on the effects of arsenic pollution on the communities of macro-invertebrate in Xieshui River. Acta Ecol Sinica. 2017; 37(1): 1-9.

Rhea TD, Harper DD, Farag MA, Brumbaugh GW. Biomonitoring in the Boulder River Watershed, Montana, USA: Metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrates assemblage. Environ Monit Assess. 2006; 115(1-3): 381–93.

Telford K, Maher AW, Krikowa AF, Foster S, Ellwood M, Ashley PM, et al. Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ Chem. 2009; 6: 133-43.

Alamdar A, Ali S, Akber M, Eqani S, Hanif N, Maria Ali S, et al. Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere. 2017; 168: 1004-12.

Wang T, Lu Y, He G, Wang T, Zhou Y, Bi C, et al. Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities. J Environ Sciences. 2017; 56: 127-36.

Hilal N, Kim G, Somerfield C. Boron removal from saline water: A comprehensive review. Desalination. 2011; 273(1): 23-35.

Wolska J, Bryjak M. Methods for boron removal from aqueous solutions—A review. Desalination. 2013; 310: 18-24.

Can-Türker O, Türe C, Böcük H, Yakar A. Phyto-management of boron mine effluent using native macrophytes in mono-culture and poly-culture constructed wetlands. Ecological Engineering. 2016; 94: 65-74.

Bradke T, Hall C, Carper S, Plopper G. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adh Migr. 2008, 2(3):153–60.

Malin-Igra A, Harari F, Lu Y, Casimiro E, Vahter M. Boron exposure through drinking water during pregnancy and birth size. Environ Int. 2016; 95: 54-60.

Tarasenko N, Kasparov AA, Strongina OM. Effect of boric acid on the sexual function in males. Gig Tr Prof Zabol. 1972; 16(11): 13–6.

Rhea TD, Harper DD, Farag MA, Brumbaugh GW. Biomonitoring in the Boulder River Watershed, Montana, USA: Metal concentrations in biofilm and macroinvertebrates, and relations with macroinvertebrates assemblage. Environ Monit Assess. 2006; 115(1-3): 381–93.

Telford K, Maher AW, Krikowa AF, Foster S, Ellwood M, Ashley PM, et al. Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ Chem. 2009; 6: 133-43.

Alamdar A, Ali S, Akber M, Eqani S, Hanif N, Maria Ali S, et al. Human exposure to trace metals and arsenic via consumption of fish from river Chenab, Pakistan and associated health risks. Chemosphere. 2017; 168: 1004-12.

Wang T, Lu Y, He G, Wang T, Zhou Y, Bi C, et al. Determination of water environment standards based on water quality criteria in China: Limitations and feasibilities. J Environ Sciences. 2017; 56: 127-36.

Hilal N, Kim G, Somerfield C. Boron removal from saline water: A comprehensive review. Desalination. 2011; 273(1): 23-35.

Wolska J, Bryjak M. Methods for boron removal from aqueous solutions—A review. Desalination. 2013; 310: 18-24.

Can-Türker O, Türe C, Böcük H, Yakar A. Phyto-management of boron mine effluent using native macrophytes in mono-culture and poly-culture constructed wetlands. Ecological Engineering. 2016; 94: 65-74.

Bradke T, Hall C, Carper S, Plopper G. Phenylboronic acid selectively inhibits human prostate and breast cancer cell migration and decreases viability. Cell Adh Migr. 2008, 2(3):153–60.

Malin-Igra A, Harari F, Lu Y, Casimiro E, Vahter M. Boron exposure through drinking water during pregnancy and birth size. Environ Int. 2016; 95: 54-60.

Tarasenko N, Kasparov AA, Strongina OM. Effect of boric acid on the sexual function in males. Gig Tr Prof Zabol. 1972; 16(11): 13–6.





Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional.